(1) Z. C. Wang, A. H. Tavabi, L. Jin, J. Rusz, D. Tyutyunnikov, H. B. Jiang, Y. Moritomo, J. Mayer, R. E. Dunin-Borkowski, R. Yu, J. Zhu and X. Y. Zhong*, Atomic scale imaging of magnetic circular dichroism by achromatic electron microscopy, Nature Materials, 17, 221-225(2018).
(2) Z. Q. Wang, X. Y. Zhong*, R. Yu, Z. Y. Cheng, J. Zhu*, "Quantitative experimental determination of site-specific magnetic structures by transmitted electrons". Nature Communications, 4,1395,2013
(3) Ping-Luen Ho, Chu-Ping Yu, Qiqi Zhang, Kyung Song, James P. Buban, Si-Young Choi, Rafal E. Dunin-Borkowski, Joachim Mayer, Nyan-Hwa Tai, Jing Zhu, Lei Jin*, Xiaoyan Zhong* , “Effect of cation ratio and order on magnetic circular dichroism in the double perovskites Sr2Fe1+xRe1-xO6". Ultramicroscopy, in press, 2018.
(4) J. Lin, X. Y. Zhong*, C. Song, J. Rusz, V. Kocevski, H.L. Xin, B. Cui, L.L. Han, R.Q. Lin, X.F. Chen and J. Zhu, Detection of magnetic circular dichroism in amorphous materials utilizing a single-crystalline overlayer, Physical Review Materials, 1, 071404(R), 2017.
(5) H. B. Jiang, X. N. Luo, X. Y. Zhong*, H. H. Zhou, C. Y. Wang, J. Shi, H. Dong, In-situ Microstructural Evolutions of 5Mn Steel at Elevated Temperature in a Transmission Electron Microscope, Journal of Iron and Steel Research International, 24: 1109-1114, 2017.
(6) Y. Xia, X. Y. Zhong*, X. X. Ke,* G.-R. Zhang, Z. Y. Cheng, B.-Q. Xu, 3D Quantification of Low-Coordinate Surface Atom Density: Bridging Catalytic Activity to Concave Facets of Nanocatalysts in Fuel Cells, Small, 12(46), 6332–6337, 2016.
(7) J. Lin, X. N. Luo, X. Y. Zhong*, H. H. Zhou, C. Y. Wang, J. Shi, H. Dong, Dislocation Pipe Diffusion of Mn during Annealing of 5Mn Steel, Journal of Iron and Steel Research International, 23 (12), 1277-1280, 2016.
(8) Y. Xia, X. N. Luo, X. Y. Zhong*, H. H. Zhou, C. Y. Wang, J. Shi, In-situ TEM Observation of Cementite Coarsening Behavior of 5Mn Steel during Tempering, Journal of Iron and Steel Research International, 23 (5): 442-446, 2016.
(9) X. N. Luo, X. Y. Zhong*, H. W. Luo, H. H. Zhou, C. Y. Wang, J. Shi, Mn Diffusion at Early Stage of Intercritical Annealing of 5Mn Steel, Journal of Iron and Steel Research International, 22 (11): 1015-1019, 2015.
(10) X. Y. Zhong*, B. Kabius, D. K. Schreiber, et al, "Three-dimensional quantitative chemical roughness of buried ZrO2/In2O3 interfaces via energy-filtered electron tomography", Applied Physics Letters, 100(10): 101604, 2012.
(11) X. Y. Zhong*, H. H. Zhou, F. Y. Wang, Y. F. Zhu, Mapping carbon distribution in 35SiMn steel by energy-filtered transmission electron microscopy, Sceince China Technological Series, 55(7), 1833, 2012.
(12) X. Y. Zhong, Y. C. Chen, N. H. Tai, I. N. Lin, J. M. Hiller and O. Auciello, “Effect of pretreatment bias on the nucleation and growth mechanisms of ultrananocrystalline diamond films via bias-enhanced nucleation and growth: An approach to interfacial chemistry analysis via chemical bonding mapping” Journal of Applied Physics, 105 (3): 034311, 2009.
(13) X. Y. Zhong*, B. Kabius, D. K. Schreiber, et al, Quantification of Interfacial Roughness of In2O3/ZrO2 Superlattice Films in 3D, Microscopy & Microanalysis, 15: 600, 2009.
(14) X. Y. Zhong, J. Zhu, A. H. Zhang, H2-induced environmental embrittlement in ordered and disordered Ni3Fe: An electronic structure approach, Intermetallics, 15 (4): 495, 2007.
(15) X. Y. Zhong, J. Zhu, A. H. Zhang, S. C. Mou, Investigation of Electron structure in the ordered and disordered Ni3Fe by electron energy loss spectroscopy, Applied Physics Letters, 89 (15): 151912, 2006.
(16) X. Y. Zhong, J. Zhu, Data acquisition and processing of electron energy loss spectroscopy and its application in the 3d transition elements, Journal of Chinese Electron Microscopy Society, 25 (2): 90, 2006.
(17) X. Y. Zhong, J. Zhu, J. Y. Liu, Study of the interfacial structure of a Pt/a-Al2O3 model catalyst under high temperature hydrogen reduction, Journal of Catalysis, 236 (1): 9, 2005.